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A finite-element code based on the level-set method is developed for simulating 
the motion of viscoelastic two-phase flow problems. This method is a generaliza- 
tion of the finite-difference approach described in [ 1-4] for computing solutions to 

two-phase problems of inviscid and viscous fluids. The Marchuk-Yanenko operator- 
splitting technique is used to decouple the difficulties associated with the nonlinear 
convection term, the incompressibility constraint, the viscoelastic term, and the in- 
terface motion problem. The nonlinear convection problem is solved using a least- 
squares conjugate gradient algorithm, and the Stokes-like problem is solved using a 
conjugate gradient algorithm. The constitutive equation is solved using a scheme that 

guarantees the positive definiteness of the configuration tensor, while the convection 
term in the constitutive equation is discretized using a third-order upwinding scheme. 
The code is verified by performing a convergence study to show that the results are 
independent of the mesh and time-step sizes. Using our code we have studied the 
deformation of drops in simple shear and pressure-driven flows and of bubbles in 
gravity-driven flows over a wide range of dimensionless capillary (Ca) and Deborah 
numbers (De). For a Newtonian bubble rising in a quiescent viscoelastic liquid we 

find that there are limiting values of the parameters De and Ca, above which the 
bubble assumes a characteristic shape with a cusp-like trailing edge. The front of the 
bubble, however, remains round, as the local viscoelastic and viscous stresses act 
to round the bubble. In a pressure-driven flow the drop is stretched so that its front, 
which is closer to the channel center, remains round, and the trailing edge, which is 
closer to the channel wall, becomes sharp. These numerical results are in agreement 
with the experimental observations. © 20Ol Elsevier Science 
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1. INTRODUCTION 

A numerical method for simulating the motion of viscoelasitc two-phase flows is devel- 

oped. The viscoelastic fluid is modeled via the Oldroyd-B model. This capability for direct 

numerical simulation of the two-phase flow problems of viscoelastic liquids could be useful 

in the modeling of many industrial processes. 
For example, it is well known that immiscible polymer blends can be mixed by subjecting 

to shear flows. This happens naturally under some processing operations (e.g., extrusion), 

which improves the mechanical properties of the extruded products. One of the mechanisms 

that is believed to enhance mixing is the breakup of drops into smaller droplets under shear 
flows. The role of viscoelastic stresses in the breakup of drops, however, is not completely 

understood. This is at least partly due to the complexity of flow field, which makes the task 
of experimentally determining the distribution of viscoelastic stresses around the droplets 

very difficult, if not impossible. For numerical simulations, on the other hand, this is not 
a problem because the detailed velocity and stress distributions are known. The numerical 
approach therefore could be extremely valuable in explaining the role of viscoelastic stresses 

in the drop breakup as well as the physics of shear-induced mixing of polymer blends. 
The problem of computing the motion of two-phase flows with interfaces is difficult 

even for Newtonian fluids because the interface shape changes in response to fluid motion. 
Across the interface the fluid properties change suddenly and an interracial force acts along 

the interface of the two fluids. When one or both phases are viscoelastic, the numerical 
problem is even more complex, as one must also solve for the viscoelastic stresses. 

There are several numerical approaches available for tracking the interface between two 
immiscible Newtonian liquids (e.g., the surface-tracking method [5], the volume-of-fluid 

method [6, 7], the mapping method [8], and the level-set method [1-4]). These methods 
have been used extensively to simulate viscous and inviscid two-phase flows. Due to the 

inherent complexity of viscoelastic flows, there are relatively fewer numerical schemes 
(e.g., the moving-grid method and the mapping method; see, respectively [9] and [10-12], 
and references therein). In this paper we use the level-set method to track the interface. 

In the level-set method [1], the interface position is not explicitly tracked but is defined 

to be the zero level set of a smooth function ~b, which is assumed to be the signed distance 
from the interface. In our implementation, it is assumed to be negative inside the drop 
surface and positive outside. Along the interface it is assumed to be zero. In order to track 

the interface, the level-set function is advected according to the velocity field. One of the 
attractive features of this approach is that it is relatively easy to implement in both two 
and three dimensions. In fact, an algorithm developed for two dimensions can be easily 

" generalized to three dimensions. The level-set function can be represented using the same 

finite-element basis functions that are used for the velocity field. Also, the method does not 
require any special treatment when a front splits into two or when two fronts merge. 

The finite-element scheme developed in this paper uses the Marchuk-Yanenko operator- 
splitting technique to decouple the difficulties associated with the incompressibility con- 

straint, the nonlinear convection term, the interface motion, and the viscoelastic term 
[13-15]. The operator-splitting scheme gives rise to the following four subproblems: a 
Stokes-like problem for velocity and pressure, a nonlinear convection-diffusion problem 

for velocity, an advection problem for the configuration tensor, and an advection problem 
for the interface. The first problem is solved by using a conjugate gradient (CG) method 
[16] and the second problem is solved using a least-squares CG method [17]. The third 
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problem is a hyperbolic partial differential equation for the configuration tensor. The two 

key features of the numerical method used for solving this problem are a scheme that ensures 
the positive definiteness of the configuration tensor and a third-order upwinding scheme for 

discretizing the advection term in the constitutive equation [ 18]. These two features are im- 
portant for obtaining a split scheme that is stable at relatively large Deborah (De) numbers. 

The fourth problem is for the advection of the level-set function 4~, which is solved using 

a third-order upwinding scheme [19]. The advected q~ is then reinitialized to be a distance 
function, which, as noted in [2], is essential for ensuring that the scheme accurately con- 

serves mass. Also note that the linear systems in the Stokes-like and nonlinear problems are 
symmetric and hence can be solved by using the CG algorithm. In our code, the product of 
the global matrix and vectors, required in the CG algorithm, is computed directly without 

assembling the global matrix of the linear system. This reduces the memory requirement 
of the computer program. 

We have used our code to investigate the dynamics of drop deformation in simple shear 
flows for the cases where the drop is Newtonian and the fluid is viscoelastic, and vice versa. 

In addition, we have investigated the deformation of a Newtonian drop in a viscoelastic 
pressure-driven flow and that of a rising bubble in a quiescent viscoelastic liquid. The 
drop (or bubble) is assumed to be immiscible with the bulk fluid. The code is verified by 

comparing the time-dependent velocity and configuration (stress) distributions for a drop 
subjected to a shear flow and for a rising bubble for three different mesh refinements, and 
for two different values of the time step. 

A drop subjected to simple shear flow of strength G deforms under the influence of 
the flow-induced stresses on the surface, while the surface tension resists deformation. The 
parameters affecting deformation are the drop radius a, the interracial tension y, G, and 

the viscosity ratio )~ = OL/rld, where ~L is the continuous phase viscosity and r/d is the 

viscosity of the fluid inside the drop. The parameters G, 0L, Y, and a can be combined 
to form a dimensionless group called the capillary number Ca = G r l L a / y .  The Reynolds 
number Re = pGa2/~TL determines the importance of inertial effects. The drop deformation 
when viscoelastic fluids are involved is relatively more complicated, as it is also a function 

of the Deborah number. The Deborah number De = ~.rG is a dimensionless measure of the 
viscoelastic stresses, where ~-r is the relaxation time of the fluid. 

Numerical simulations are started by placing an initially circular drop of radius a in the 
flow. The drop deforms with time and, as in experiments, may or may not reach a steady state 

shape. Our calculations show that when there is a final steady state shape, it is a function of 
Ca and De. Similarly, the shape of a bubble rising in a viscoelastic liquid depends on both 
Ca and De. 

For an elliptical drop, the deformation can be measured in terms of the deformation 
parameter D, 

L - B  
O - - -  

L + B '  

where L and B are, respectively, the major and minor axes of the ellipse. As we discuss 
later, in viscoelastic simple shear flows, the drops do not deform to elliptical shapes, and 
therefore strictly speaking, the measure D alone cannot completely quantify drop defor- 
mation. Another measure that quantifies the deviation from the elliptical shape is needed. 

But since our primary goal in this paper is to present the numerical method, we avoid this 
additional complication. 



V I S C O E L A S T I C  T W O - P H A S E  F L O W  S O L U T I O N S  5 5 5  

It is worth noting that experimental studies show that when the flow outside a drop or 
bubble is not axisymmetric, the deformed drop is also not axisymmetric [20]. For example, 
the deformed drop shape in simple shear flows is not axisymmetric. In fact, the deformed 
drop shape is not even symmetrical. When one or both of the liquids involved are viscoelastic, 
the drop asymmetry is greater, which, as discussed in Section 3, is due to the development 
of viscoelastic stress boundary layers near the interface that are not symmetrically located 
about the major axis of the deformed drop. Therefore, strictly speaking, for understanding 
the deformation and breakup of drops in viscoelastic simple shear flows, simulations must 
be performed in three dimensions. 

Another problem we study is that of a bubble rising in a viscoelastic fluid. It was reported 
in [20] that a bubble rising in a viscoelastic liquid develops a two-dimensional cusp-like 
trailing edge when Ca is O(1), where Ca = UrlLa/y and U is the velocity of the rising 
bubble. Specifically, the bubble appears to have a sharp cusp-like trailing edge in one view 
and a broad trailing edge in the orthogonal view. For capillary numbers below the critical 
value of O(1), the trailing edge of the bubble is round. The numerical simulations reported 
in [10] for an axisymmetric bubble are in agreement with these experimental observations, 
except that in experiments the cusp shape is two-dimensional. For our two-dimensional 
simulations, the bubble assumes a cusp-like trailing edge when Ca and De numbers are 
O(1), where De = XrU/(2a) and 2a is the diameter of the undeformed bubble. 

The outline of the paper is as follows. In the next section we state the governing equations 
for the Oldroyd-B liquid, briefly describe the level-set approach, and present our finite- 
element method for viscoelastic two-phase flow. In Section 3, we discuss the convergence 
study that shows that the numerical results are independent of the mesh size as well as 
the time step. We also discuss the results for the deformation of drops in simple shear and 
pressure-driven flows of Newtonian and Oldroyd-B liquids, and for a bubble rising in an 
Oldroyd-B liquid. 

2. GOVERNING EQUATIONS AND THE LEVEL-SET METHOD 

The viscoelastic fluid in our simulations is modeled using the Oldroyd-B model. Most 
results presented in this paper are for two-dimensional flows. Let us denote the domain 
containing the viscoelastic fluid and a drop (or a bubble) by f2, and the domain boundary 
by F. The upstream part of V is denoted by F- .  The governing equations for the two fluid 
system are 

V . u = O ,  (1) 

p - ~ - + u .  Vu = p g - V p + V .  ~ +V-(2r / sD)+yKS((p)n ,  (2) 

U -~- U L on F, (3) 

with the evolution of the configuration tensor A given by 

A0 + u .  V A = A . V u + V u  r . A - 1 T ( A - I ) ,  
3t X~ 

A = A L  o n F - .  
(4) 
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Here u is the velocity, p is the pressure, r?s the solvent viscosity, p is the density, D is the 

symmetric part of  the velocity gradient tensor, c is a measure of polymer concentration in 

terms of  the zero shear viscosity, n is the outer normal, y is the surface tension, x is the 

surface curvature, ¢ is the distance from the interface, S is the delta function, and ~-r is 

the relaxation time. The zero shear viscosity 0 ----- ~s + 17p, where ~/p = C17s, is the polymer 

contribution to viscosity. The fluid retardation time is equal to ~.r/(l + c). The surface- 

tension force acts only along the interface where the level-set function ¢ is zero. Also note 

that in the Newtonian region, since the relaxation time is zero, from (4) A = I and the 

viscoelastic stress term in (4) drops out because V - A is zero. 

The level-set function ¢ is advected according to the local velocity; i.e., 

- -  + u .  v ¢  = 0 .  ( 5 )  
0t 

Clearly, if ¢ satisfies the above equation and ¢ = 0 at t ----- 0 along the interface, the zero 

level set of ¢ marks the interface for all t > 0. When ¢ is advected according to (5) it will 

not remain the distance function for the points away from the interface, and therefore it 

must be reinitialized to be a distance function. But since only the zero level set is physically 

relevant, as noted in [21], "we have a lot of  freedom in extending the level set function 

outside the interface." Later in this section, we discuss a finite-element scheme that can be 

used to reinitialize ¢ to be a distance function. 
In the present method the governing equations are solved simultaneously everywhere 

(i.e., both inside and outside the drops/bubbles in the domain). In this sense our approach is 

different from the methods where the flow fields inside and outside the drop are decoupled 

and solved separately [11, 12]. In a decoupled approach one must apply suitable boundary 

conditions at the interface (i.e., impose the continuity of velocity and shear stress across 

the interface), and the jump in the normal stress across the interface is set to be equal to 

the surface-tension force. Since in our approach the governing equations are solved in a 

coupled manner, the method is stable and allows us to take relatively large time steps. It is 

worth noting that since we use an explicit scheme to advect the interface according to (5), 

the CFL criterion is pertinent to our calculations and thus when the time step is too large 

the numerical method fails. 

2.1. Reinitialization of ¢ 

The level-set function ¢ is reinitialized to be a distance function after each time step by 

solving to steady state the equation, obtained in [2], 

- -  + w .  V ¢  = S ( ¢ 0 ) ,  (6)  
0t 

where ¢0 is the distribution to be reinitialized and 

v4, 
w = S(¢o)lYe----i" 

Here S(¢0) is the sign function (i.e., S(¢o) = 1 if ¢0 > 0 and S(¢o) = - 1  if ¢0 < 0). In 
order to avoid discontinuities, in our code we use the smoothed sign function 

¢0 
S(,o)-  



VISCOELASTIC TWO-PHASE FLOW SOLUTIONS 557 

where h is equal to one and half times the element size. Equation (6) is a first-order hyper- 
bolic partial differential equation, which is solved using a positive-only upwinding scheme, 
described in [16]. Clearly, the characteristics of (6) point in the direction of w. Therefore, 
for the points outside the drop w points away from the drop and for the points inside the 
drop it points inward. Thus, (6) can be solved by specifying the boundary condition ¢ = ¢0 
at the two-fluid interface ¢ = 0. 

2.2. Variation of Density, Viscosity, and Relaxation Time across the Interface 

In our finite-element scheme the fluid viscosity is assumed to take a jump across the 
interface; i.e., 

{ ~Td 

/7 -~- 0 .5 ( r ]  d qt_ ~/L) 

i f ¢  < 0 ,  

i f ¢  = O, 

i f ¢  > O. 

(7) 

Here qd and/~L are the viscosities of the fluids inside and outside the drop, respectively. In 
other words, the nodes that are inside the drop have the drop viscosity and those outside 
have the fluid viscosity. The fluid density, on the other hand, is assumed to vary smoothly 
across the interface 

Pd 

P =  PL 

0.5(pd + PL) + 0.5(pd -- PL) sin(~h~ ) 

i f ¢  < - h ,  

i f ¢  > h, 

otherwise, 

(8) 

where h is equal to one and half times the element size, and Pd and PL are the densities of 
the fluids inside and outside the drop, respectively. This smoothing of the density is similar 
to that in [2] and is needed for avoiding numerical instabilities for relatively large density 
ratios Pd/PL. The fluid relaxation time is assumed to jump across the interface 

{ krd if ¢ < 0, 

~'r = 0.5(~rd "-1- )~rL) if ¢ = 0, 

)~rL if ¢ > 0. 

(9) 

Here ~-rd and ~.rL a r e  the relaxation times of the fluids inside and outside the drop, respectively. 
If the fluid inside (or outside) the drop is Newtonian, its relaxation time is set to zero. A 
relaxation time of zero ensures that the fluid relaxes instantaneously and thus behaves 
like a Newtonian fluid. This allows us to use the same equations for both Newtonian and 
viscoelastic liquids. 

The surface-tension force is smoothed and acts only on the elements for which ¢ is 
smaller than h. This is done by approximating 8(¢) in (2) with a mollified delta function 
8h (¢) using the approach described in [2]: 

{ (l+~os<,~¢/h~ for 1¢1 < h, 
~h (t~) = 2h 

0 otherwise. 
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We use an unstructured mesh for which the element size near the drop is kept approxi- 
mately constant. This is used to define h to be one and half times the average element size 
near the drop, where the element size is equal to the side of a square whose area is two 
times that of a triangle. 

The error introduced by smoothing the surface-tension force is O(h) (see [22] for a 
detailed discussion). Also note that Eqs. (9) and (10) require that ~b be maintained as a 
distance function, which we do in our implementation by reinitializing 4~ after each time 

step. 

2.3. WeakForm 
The weak form of the governing equations is obtained by multiplying Eqs. (1), (2), (4), 

and (5) by the test functions and integrating the second-order term by parts. Furthermore, 
since the fluid is viscoelastic, we also need to solve the constitutive equation (4) along with 
the momentum and continuity equations. In obtaining this weak form, the hydrodynamic 
stresses acting at the interface are completely eliminated. 

To state the weak form for the equation of motion we need the spaces 

Wu --- {u E Hi(g2) 2 I u = ur( t)  on 1"}, 

W,o = {v Iv e HI(f2) 2 andv = 0 on F}, 

WA = {A E Hl(~2) 3 I A = AL(t) on F-}, 

WA0 : {A ~ H I ( ~ )  3 I A = 0 on F-}, 

W~ --- {q~ E Hi(if2) 

WOo = {~b 6 Hi(f2) 

= Jq  
/ 

L~(~) L2(~) 
k 

4~ = 4~0(t) on I'-}, 

4~ = 0on  I'-}, 

(10) 

where I ' -  is the upstream part of I'. It is easy to show that the following weak formulation 
of the problem holds for the two-phase system: 

For a.e. t > 0, find u E Wu, A 6 WA, p 6 L2(f2), and ~ E W~, satisfying 

f P(~tt -g)'vdx-f pV'vdx+~2OsD[u]'D[v]dx-f v'V'(~A) dx 
- / ~ y i c 3 ( ~ b ) n . v d x =  0 foral lv~Wu0, (11) 

f q V . u d x = 0  fo ra l lq  ~L2(f2), (12) 

ult=0 = Uo in f2, (13) 

+ u - V A - A - V u - V u  r . A +  ( A - I )  - s d x = 0  for al ls~WA0, (14) 

Air=0 = Ao in f2, (15) 

) + u . V ~  g d x = 0  for a l lgcW00 ,  (16) 

4~lt=0 = 4~0 inf2. 
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2.4. Finite-Element Approximation 

In order to solve the above problem numerically, we discretize the domain using a finite- 
element triangulation Th for the velocity and configuration tensor, where h is the mesh 

size, and a triangulation T2h for the pressure. For approximating Wu, Wuo,WA, WA0, L 2 (f2), 
L02(f2), W 0, and Woo, the finite dimensional spaces are 

Wu,h 

W0,h 

L 2 0,h 

WA,h 

WAO, h 

W~,,h 
WOO,h 

WOR, h 

: {uh ~ C°(~2)2IVhIT ~ P1 × P1 for all T ~ Th, uh = Ur,h on F}, 
(17) 

= {Vh 6 C0((2)2[Vhl~r 6 P1 × P1 for all T ~ Th, Vh = 0 on F}, 

= {qh E C°((2)Iqh IF E PI for all T E Tzh }, 

= {qhEL2h ~ q h d x = O ) ,  (18) 

= {ShECO((2)31ShI~ E El × P1 x P1 for all T ~ Th, Sh =AL,h on F-} ,  

= {Sh E C0(~)3]Sh IT E P1 × PI × P1 for  all T ~ Th, Sh = 0 on  F-}, (19) 

= {gh ~- H 1 (~) I gh IF E P1 for all T ~ Th, gh = 4 ~n on I ' -  }, 

= {gh ~ H~(~)lghl~ E P1 for all T ~ Th, gh = 0 on F-} ,  (20) 

= {gh6Hl(~)lgh]~ " ~ Pl forallTe. Th, gh = 0 on the interface}. (21) 

Using these finite dimensional spaces, it is straightforward to discretize Eqs. (11)-(16). 
Notice that the discrete space WO,h assumes that ~b is known on the upstream portion of  the 

boundary. This is not a problem even when 4~(t) is not known on the upstream boundary in 
advance because the imposed boundary value can be corrected during the reinitialization 
step. We remind the reader that since only the zero level set of  ~p(t) is physically relevant, 

as noted in [21], "we have a lot of  freedom in treating q~(t) away from the interface." In 
our code, the value from the previous time step is used as the boundary value. Also note 

that the reinitialization space WOR,h a s sumes  that q~ remains zero along the interface, which 
is done by imposing a Dirichlet boundary condition, ~b ---- 0, along the interface during 
reinitialization iterations. 

2.5. Time Discretization Using the Marchuk-Yanenko Operator-Splitting Scheme 

The initial value problem (11)-(16) is solved by using the Marchuk-Yanenko operator- 
splitting scheme. This allows us to decouple its four primary difficulties: (i) the incompress- 
ibility condition and the related unknown pressure Ph; (ii) the nonlinear convection term; 

(iii) the interface problem and the related unknown level-set distribution cPh; and (iv) the 
equation for the configuration tensor, and the viscoelastic stress tensor, which appears in 
the momentum equation. 

The Marchuk-Yanenko operator-splitting scheme can be applied to an initial value prob- 

lem of the form 

de  
- -  -k- A I ( ~ )  -q- A2(~b) -k- A3(q~) -1- A4(~b) = f ,  
dt 

where the operators Al, Az, A3, and An can be multiple-valued. 
Let At be the time step, and a l  and a2 be two constants: 0 < a l ,  a2 < 1, and a l  + or2 -- 1. 

We use the following version of  the Marchuk-Yanenko operator-splitting scheme to simulate 
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the motion of drops and bubbles in a viscoelastic fluid. Set 

u ° = U0,h, A ° = Ao,h, and ~b ° = q~o,h. (22) 

For n = 0, 1, 2 . . . . .  assuming u n, A n, and ~b n are known, find the values for n + 1 using 

the following. 

Step 1. Find U n+l /4  E Wu,h and pn+l/4 E L 2 by solving 0,h 

f~ un+l/e-un f~ f~ P At • v d x  - pn+l/4v • v d x  q'-o/1 2~/sD [u n+l/4] : D[v] dx 

=~v.v.(cA")dx+j~×K~(cb)n.vdx for al lv E W0 h, \xr / 

f qV • u n+l/4dx = 0 for all E L ] .  (23) q 

Step 2. Find u "+2/4 c Wu,h by solving 

P un+2/4--un+l/4At • v dx + ~ pL(U n+2/4 • Vun+2/g) vdx" 

+ or2 f ~  2OsD [u n+2/4] : D[v] dx  = 0 for all v 6 Wo, h. (24) 

Step 3. Find A n+3/4 E WA,h by solving 

f An+3/4_~ A n .~_ un+2/4 . van+3/4 __ An+3/4. VUn+2/4-  (run+2~4) T . An+3/4 
\ At 

+ ~ r ( A n + 3 / 4 - I ) ) . s d x = 0  f o r a l l s 6 W A o , h .  (25) 

Step 4. Find 4b n+4/4 6 W~, h by solving 

f~ (~n+4/4-gt~n ) 
\ S ;  "~ un+2 /4 .  V ~  n+4/4 gh dx = 0 fo r  al l  gh E W~bo,h. (26) 

Set u n+l = u n+2/4, A n+l = A n+3/4, pn+l = pn+l/4, ~bn+l = ~n+4/4. 

Step 5. Reinitialize q$~+1. Set ~b ° = ~b n+l. For r = 0, 1, 2 . . . . .  

W r = S(q~n+l)  IVq~[ I . 

Find ~b~ +l ~ WfbR,h by solving 

(~-t-1  __ q%~ 
+ w r . v g b ~ ) g h d x = f S ( f b n + l ) g h d X  

g2 
for all gh 6 WOR,h. (27) 

Go back to the above for loop. 
Set ~ n + l  = ~q-I and go back to the first step. 
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Remarks 

1. The first step gives rise to a Stokes-like problem for the velocity and pressure distri- 

butions which is solved by using a CG method [16]. 

2. The second step is a nonlinear problem for the velocity, which is solved by using a 

least-squares CG algorithm [17]. 

3. The third step is a linearized hyperbolic problem for the configuration tensor or stress. 

This problem is solved by using a third-order upwinded positive-only scheme [ 18]. The two 

key features of  this scheme are a positive-only scheme that guarantees that the configuration 

tensor remains positive definite, and a third-order upwinding scheme for discretizing the 

advection term in the constitutive equation. These two features are important for obtaining 

a scheme that is stable at relatively large De numbers. 

4. In this paper, we assume that oq = c~2 = 0.5. 
5. The fourth step is a hyperbolic problem for the scalar level-set function ~b. This 

problem is solved by using a upwinding scheme where the advection term is discretized 

using a third-order scheme [18, 19, 23]. That is, u - V~b at x ° is estimated using the known 
values of  ~b at the five points X - 2 ,  X - l  , X 0, X 1 , and X 2, which lie on the line that is parallel 

to u and passes through x °, 

u .  V4>(x °) = lu(x°)l ~ rj4~(xJ) 
h 

J 

The points x -2 and x -1 are upstream points, and x 1 and x 2 are downstream points. Here 

distance h = Ix -1 - x°l and 

IJi¢0,i(~ ° - U + or) 
fo r /  # 0 ,  

r i ~-  l ~ i ~ j ( ~ i  - -  ~ J )  

r0 = - - E ~ / ,  
i¢0 

where ~ i  = IX i __ X 0 ] / h .  For ~ = 0 the above approximation is centered and fourth-order 

accurate, and for ~ > 0 it is upwinded and third-order accurate. The degree of  upwinding 

is controlled by ~; in our simulations, we use ot = 3 which was picked by trial and error. 

6. After advecting ~b, we reinitialize ~b to be a distance function near the interface by 

performing two iterations of  (27). It is important to note that the surface ~b(t) = 0 does not 

change during reinitialization. This is done by first determining the elements that contain 

a q~(t) = 0 surface and then forming a list of  the nodes that are on these elements. The 

task of  keeping a ~b(t) = 0 surface fixed during the reinitialization step is equivalent to 

keeping ~b(t) fixed for these nodes, which can be done by applying the Dirichlet boundary 

condition. The space used in (27) for simulations is therefore a smaller subspace of  space 

W~R,h defined in (21). 

3. NUMERICAL RESULTS 

We next discuss the numerical results obtained using the above algorithm for the defor- 

marion/motion of drops and bubbles in Newtonian and Oldroyd-B liquids. The parameter 

c in the Oldroyd-B model is assumed to be one (i.e., r/s = r/p). We also assume that all 
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FIG. 1. Typical computational domains with sides W and H used in our simulations. In the first figure, the 
drop is subjected to a pressure-driven flow and in the second to a simple shear flow. In both cases, the velocity 
distribution is prescribed on the domain boundary. 

dimensional quantities are in centimeter-gram-second units. Parameters such as surface 

tension, applied shear rate, viscosity ratio, and density difference are varied to demonstrate 

that the numerical method can be used to efficiently compute interface problems for a wide 
range of these parameters. 

We discuss results for the following three cases: deformation of drops under shear flows, 

deformation of  Newtonian drops in pressure-driven viscoelastic flows, and deformation of  

Newtonian bubbles rising in quiescent Newtonian and viscoelastic liquids. For the case of 

drops subjected to simple shear flows we consider cases where the drop is viscoelastic and 
the fluid is Newtonian, and vice versa. 

Simulations are performed in a rectangular-shaped domain with sides W and H,  as shown 

in Fig. 1. For simple shear flow studies, an initially circular drop is placed at the center of  the 

domain and subjected to a simple shear flow by moving the left and right walls of  the domain 

in opposite directions. The density ratio in these simulations is assumed to be one. In the 

bubble-rise studies, an initially circular bubble placed near the bottom of  the domain rises, 

as it is lighter than the surrounding liquid. In pressure-driven flows, a circular drop is placed 

near the left-hand bottom comer of the computational domain. The flow at the domain inlet 

is assumed to be parabolic. In all simulations, the initial state of  the configuration tensor is 
assumed to be 

Ao : I .  

The initial value A0 = I implies that the Oldroyd-B fluid is in a relaxed state. 

3.1. Convergence with Mesh Refinement 

The code was verified by performing a convergence study that shows that the steady state 

shape of the drop is independent of  the mesh resolution and also of  the time step used in 

the calculations. A typical unstructured mesh with a relatively finer resolution near the drop 

surface used in these simulations is shown in Fig. 2. The time step was varied between 

0.001 and 0.0005. 

Simulations are started by placing a circular drop of  diameter 1 at t --- 0 at the center 

of  the computational domain, where it is subjected to a viscoelastic simple shear flow of  

strength 0.4 s -1. The domain sides are W = 5 and H = 10. The fluid viscosity is 300 and 
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FIG. 2. A typical finite-element mesh used for the simple shear flow problems and the deformed drop shape 
are shown. The parameters are the same as in Fig. 4. The pressure elements are shown. Note that there is a higher 
concentration of nodes around the center of the domain where the drop is placed. The mesh contains 8394 elements, 
4305 pressure nodes, and 17,003 velocity nodes. 

)~ = 1. The relaxation time of the fluid is 1, and the surface tension is 250. For the above 

parameters, Re = 0.0003, De = 0.4, and Ca = 0.24. As we discuss later, for these parameter 

values the drop attains a steady state shape. 

From Table I we note that when the number of nodes is increased from 9129 to 11,567, 

and further to 17,493, the steady state deformations as well as the drop areas are comparable. 

The drop area for the finest mesh is "--I.5% smaller than the initial area. The mesh was re- 

fined such that in all three cases the elements near the interface were four times smaller than 

the elements farther away. For a mesh with 17,493 nodes the drop area and deformation are 

shown in Table II for two different values of the time step. From this table we nete that the 

steady state results are also approximately independent of the time step. The time evolution 

curves of the drop shape shown in Fig. 3 for two different values of time step and mesh res- 

olution are also approximately identical. We may therefore conclude that both the transient 

and the steady state solutions are independent of the mesh resolution and the time step used. 
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TABLE I 

Drop Deformation and Area for Three Dif- 

ferent Mesh Resolutions for a Newtonian 

Drop Subjected to a Simple Shear Flow 

No. ofnodes Deformation D Drop area 

9,129 0.4758 0.7387 
11,567 0.4863 0.7327 
17,493 0.4779 0.7694 

Note. The time-step size is 0.0001. Ca = 0.24, 
Re = 0.0003, and De = 0.4. 

For the simple shear flow problems discussed in this and the next sections, we were able 

to successfully simulate flows up to De = 16 using a mesh with 11,576 nodes for which 

the element size near the drop is "--0.09. The method converges for Re < O(1000), includ- 

ing Stokes flow (Re = 0). The Reynolds number for most cases described in this paper is 

much smaller than one and is approximately of  the same order as for experiments described 

in [24]. 

The qualitative nature o f t rA distribution shown in Figs. 4a-4c also remains approximately 

the same when the mesh resolution is increased and when the time step is decreased. From 

these figures we note that the maximum value of  trA is near the tip of  the major axis of the 

deformed drop. Also note that the viscoelastic stress distribution, and consequently also the 

drop deformation, is not symmetric about the drop major axis. In other words, the deformed 

drop is not exactly of  an elliptical shape. This result is in agreement with experiments that 

show that the drops and bubbles in viscoelastic flows do not deform to symmetric shapes, 

unless the flow itself  is symmetric [20]. In fact, even when the flow is symmetric the drop 

shape may not be symmetric (e.g., a bubble rising in a viscoelastic liquid may develop 

a two-dimensional cusp-shaped trailing edge). This implies that fully three-dimensional 

simulations are needed for understanding these asymmetrical  deformations of  viscoelastic 

drops subjected to simple shear flows. 

3.2. Deformation of a Newtonian Drop in a Simple Shear Flow of a Viscoelastic Liquid 

We next consider the case of a Newtonian drop subjected to a simple shear flow of  a 

viscoelastic liquid. The initial drop diameter is 1 and the shear rate is 0.4 s -1. The fluid 

viscosity is 300 and )~ = 1. The Reynolds number is 0.0003. 

TABLE II 

Drop Deformation and Area for Two Dif- 

ferent Values of Time Step for a Newtonian 

Drop Subjected to a Simple Shear Flow 

Time step Deformation D Drop area 

0.0005 0.4749 0.7659 
0.001 0.4779 0.7694 

Note. The number of nodes is 17,493. Ca = 0.24, 
Re = 0.0003, and De = 0.4. 
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FIG.  3. Transient deformation of a Newtonian drop in a viscoelastic shear flow for Ca = 0.24, De = 0.4, and 

Re ---- 0.0003. The drop attains a stable, approximately elliptical shape. The figure shows that for varying resolution 

and t ime steps, the final deformations as well as transient deformations are approximately the same. 
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FIG.  4. (a--e) Isovalues of trA are shown for the case of a Newtonian drop subjected to a viscoelastic shear flow 

with Ca = 0.24, De = 0.4, and Re = 0.0003. (a) The time step is 0.0001 and the number of nodes is 9129. Steady state 

deformation D = 0.4758. (b) The t ime step is 0.001 and the number of  nodes is 11,567. Steady state deformation 

D = 0.4863. (c) The time step is 0.001 and the number of nodes is 17,003. Steady state deformation D = 0.4779. 

(d) Streamlines around a Newtonian drop subjected to a viscoelastic s imple shear flow. (e) A magnified view of 

the distribution of the principal direction of  A is shown. Notice that the viscoelastic stresses are extensional near 

the tip of major axis and act in the direction approximately normal to the drop surface. 
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FIG.  4~Sontinued 

Our simulations show that for a given De there is a critical value of Ca, above which 
there are no steady solutions. Specifically, when Ca is smaller than the critical value the 
drop deforms into a stable, approximately elliptical shape (see Fig. 4a). The streamline 
patterns for Ca = 0.24 and De = 0.4 are shown in Fig. 4d, and for this case the drop attains 
a steady state shape, with D = 0.4758. For Ca = 0.6 and De = 0.4, on the other hand, the 
drop continues to deform and eventually breaks up (see Fig. 5a). 

From Fig. 4d we note that the drop subjected to a viscoelastic shear flow develops 
relatively pointed ends for much smaller deformations than in the case where the shearing 
liquid is Newtonian. This is a consequence of the fact that the viscoelastic stresses near 
the tips of the major axis are relatively large (see Figs. 4c and 5a) and that the principal 

direction of viscoelastic stress near the tips is normal to the drop surface (see Fig. 4e). 
These viscoelastic stresses acting normal to the drop surface locally pull out the drop 
surface, leading to the formation of pointed edges. For Ca = 0.6, shown in Fig. 5a, this 
eventually leads to tip streaming, and the drop volume decreases with time, as the drop loses 
fluid. 

Simulation results in three dimensions for the deformation of a Newtonian drop in a 
viscoelastic shear flow at t = 0.9 and 2.1 are shown in Figs. 5b and 5c for D e = 0 . 4  and 
Ca = 0.3. As observed in the two-dimensional case, the drop starts to deform along the 
local direction of stretch and rotates to align parallel to the streamlines. The drop also starts 
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FIG. 4--Continued 

to develop relatively pointed ends. Analysis of the cross sections shows that the deformed 

drop is not axisymmetric. 

In this paper we restrict ourselves to presenting the numerical scheme. Further results 

of three-dimensional simulations as well as the breakup and tip streaming, which require 

much higher resolution to accurately capture breaking from the tips, will be addressed in a 

future paper [26]. 

3.3. Deformation of a Viscoelastic Drop in a Simple Shear Flow of a Newtonian Liquid 

Next, we describe the behavior of a viscoelastic drop subjected to a simple shear flow of 

a Newtonian liquid. The drop diameter is 1 and the shear rate 0.4 s -~. The fluid viscosity is 

300 and )~ = 1. The Reynolds number is 0.0016. Our focus is to investigate the role of De 

and Ca on the drop deformation. In our simulations De and Ca are varied independently by 

changing the relaxation time of the fluid inside the drop and the surface tension. 

As is the case for a Newtonian drop, for a fixed De the deformation increases with 

increasing Ca. From Fig. 6a we note that for Ca = 0.6 and De = 0.4 the viscoelastic drop 

is not significantly deformed (i.e., D = 0.4675). From this figure we also note that the 

distribution of trA is not symmetrical about the major axis and that the maximum value of 

trA is near the tip of the approximate major axis. The thin boundary layers inside the drop 
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where trA is relat ively large are, however,  not  symmetr ica l ly  located about  the major  axis 

(see Figs. 6a and 7). D u e  to this asymmetry  o f  viscoelast ic  stresses the de fo rmed  drop is 

not exact ly symmet r ic  about  the major  axis. For  Ca  = 60 and De = 8.0, at t = 10 the drop 

is significantly deformed,  with D = 0.8152, as shown in Fig. 7. For  these  parameter  values 

the drop does not  reach a steady state shape and cont inues to deform. The  m a x i m u m  value 

of  trA in this case is not  near  the tip of  the ma jo r  axis. 

F rom Fig. 6b we  note  that the viscoelast ic  stresses inside the drop are extensional  near 

the major  axis tips, as the principal  direct ion o f  the configuration tensor  near the tips is 

approximate ly  normal  to the drop surface. F r o m  Fig. 8a we note that for  a constant  value of  

Ca, the m a x i m u m  value  o f  trA increases with increasing De. The extensional  viscoelast ic  

stresses pull the drop surface inward near the ends o f  the major  axis, and therefore the drop 

deformat ion decreases  when  De is increased. This  trend, however,  reverses  for the higher  

values o f  De, for which  the drop deformat ion increases with increasing De  (see Fig. 8b). 

a 10 

0 ~ I  . . . .  , . . . .  I . . . .  , . . . .  I . . . .  ' . . . .  I . . . .  I . . . .  I . . . .  , . . . .  I 

0 l 2 3 4 5 

FIG. 5. (a) A Newtonian drop subjected to a viscoelastic shear flow for De = 0.4, Ca = 0.6, Re = 0.0003 and 
time step = 0.001. At t = 10, deformation D = 0.8402. For these parameter values, the drop continues to deform 
and eventually breaks up. Isovalues of trA at t = 10 are shown. Notice that trA and thus viscoelastic stresses 
are higher near the tips along the major axis of the drop. (b) Deformation of a three-dimensional Newtonian 
drop subjected to a viscoelastic simple shear flow in the xz-plane. The velocity field imposed on the boundary is 
independent of y. The number of nodes is 136,161, De = 0.1, Ca = 0.3, and the time step = 0.0003. At t = 0.9, 
deformation D = 0.1502. (c) The parameters are the same as in (b). At t = 2.1, deformation D = 0.5624. 
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FIG. 6. (a) A magnified view of isovalues of trA is shown for a steady state viscoelastic drop in a simple 
shear flow of a Newtonian fluid. Notice that trA is relatively large near the tips along the major axis of the drop 
and that the distribution of trA is not symmetric about the approximate major axis. The stress boundary layer, the 
thin region where trA is relatively large, is not symmetrically located about the major axis. The time step used is 
0.001. For Ca = 0.6, De = 0.4, and Re = 0.0003, steady state deformation D = 0.4675. (b) A magnified view of 
the distribution of the principal direction of A is shown for the case described in (a). Notice that near the major 
axis tips the principal direction of the configuration tensor is approximately normal to the drop surface. 

This behavior of viscoelastic liquids is not unexpected. For example, the drag coefficient 

for a cylinder placed in an Oldroyd-B fluid decreases with De for De < ~O(1).  But, for the 

higher values of De the drag coefficient increases with increasing De. This is a consequence 

of the memory, and resulting nonlinearly, of the Oldroyd-B fluid. It was suggested in [9] 

that this reversal of trend at higher De is due to the modification of the velocity field from 

that for a Newtonian liquid. Specifically, at higher De, the shear rate in the region where 

the polymer stretch is relatively large is smaller than that for a Newtonian fluid in the same 

flow geometry. 

Also notice that in Fig. 7 the elongated drop is not small compared to the domain size, 

and thus the obtained results are not independent of the computational domain size. But 

since in this paper our main goal is to present the numerical method, we simply note that a 

larger sized domain should be used to make these results independent of the domain size. 

3.4. Newtonian Drops in Pressure-Driven Viscoelastic Flows 

Next, we describe the results for the case where a Newtonian drop is placed in a pressure- 

driven flow of a viscoelastic liquid. This problem is of interest in many material processing 

applications where polymer blends are subjected to pressure-driven flows. The flow causes 
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FIG. 7. A viscoelastic drop in a simple shear flow of a Newtonian fluid for Ca = 60, De = 8.0, and Re = 0.0003. 
The time step is 0.001. The results are shown at t = 10. Deformation D = 0.8152. The drop breaks up in this case. 
A magnified view of isovalues of trA is shown. Notice that the maximum value of trA is not near the tips. 

the droplets in an immiscible polymer blend to stretch and break up, which leads to mixing. 

Our goal here is to study the drop deformation as it moves through the domain. 

The domain is rectangular with sides measuring 7 and 4. The flow at the bottom of 

the domain is assumed to be parabolic, with a centerline velocity of 1. A drop with an 

initial diameter of 1 is placed at x = - 3  and y = - 6 .  The fluid viscosity is 200, ;L ----- 1. 

The dimensionless parameters based on the centerline velocity are De = 5, Ca = 2000, and 

Re = 0.005. 

Our simulation shows that the drop stretches and orients, as shown in Fig. 9a. The 

interesting feature of deformation is that the front of the drop is relatively round but the 

trailing edge becomes sharper and assumes a cusp-like shape at high De, as shown in Fig. 9a. 

In a simple shear flow the principal direction of stretch is at 45 ° to the flow direction, and 

so the drop is stretched along this direction. From this figure we note that the front of the 

drop is closer to the channel centerlines and hence its velocity is larger than that of the 

trailing edge, which is closer to the channel wall. Therefore, the drop, as it moves upward in 
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FIG. 8. (a) The maximum value of trA for a viscoelastic drop subjected to a Newtonian shear flow is shown as 
a function of De, for two different values of Ca. The Reynolds number is 0.0003. Notice that the maximum value 
oftrA is larger for Ca = 0.34, as the drop deformation for this case is smaller. (b) Deformation as a function of De 
for a viscoelastic drop in Newtonian shear flow. The Reynolds number is 0.0003 and Ca = 0.6. Viscoelastic drops 
are less deformed compared to Newtonian drops (De = 0). For De < 1 the deformation decreases with increase in 
De, but this trend reverses for higher values of De. 

the pressure-driven flow, also rotates in the counterclockwise direction and bends such that 

the center of curvature of the lower surface moves to the outside [25]. This bending of the 

drop gives the impression that it is rotating in the clockwise direction even though, as noted 

above, the rotation is in the counterclockwise direction. Another interesting feature of the 

drop deformation at t = 3.9 is that the center of curvature of the lower surface is outside the 

drop. From Fig. 9b we also note that trA is relatively large near the cusp-shaped trailing 

edge, and we may therefore conclude that the viscoelastic stresses cause the formation of a 

sharp trailing edge. 

3.5. Newtonian Bubbles Rising in Newtonian and Viscoelastic Liquids 

In this section we describe the case of a Newtonian bubble rising in the Newtonian and 

viscoelastic liquids. The domain is assumed to be rectangular with sides measuring 10 and 

8. The velocity is assumed to be zero along the four sides of the domain. A bubble with an 

initial diameter of 2 is placed on the centerline near the inlet at x = 4 and y = 2, as shown 

in Fig. 10. For the Oldroyd-B fluid, viscosity is 200, the density is 1, and the relaxation time 

is 3.0, and for the Newtonian fluid viscosity is 10 and density is 1. Numerical studies are 

carried out for two values of bubble viscosity, 20 and 200, and for densities of 0.1 and 0.2. 

The Reynolds and Deborah numbers are calculated based on the mass-averaged velocity, 

which, since the density inside the bubble is constant, is the same as the area-averaged 
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F I G .  9. A Newtonian drop in a viscoelastic pressure-driven flow. The density ratio is 1, ~. = 1, D e  = 5, C a  = 

2000,  R e  = 0 .005,  and  the time step = 0 .001 .  (a) The time-dependent shapes at t = 0, 1.5 and  3.9 are shown. Notice 
that at t = 3.9,  the front of the drop is relatively round and the trailing edge is sharp.  (b) At  t = 3 .9  isovalues of 
trA are shown. Notice that trA is relatively large near the cusp-shaped trailing edge. 

velocity, 

& dA 1) 
Vb - -  ~ ~. <o 

Ad 

where ~b < 0 defines the area occupied by the drop, Ad = f~b<_O d A  is the drop area, and v 
is the y-component of velocity inside the drop. 

As expected, when an initially circular bubble is released in a liquid of larger density 
it starts to accelerate upward because of the buoyancy force. The mass-averaged bubble 
velocity first increases rapidly with time and then changes slowly with time, but it does 
not reach a constant value, as the bubble shape continues to change with time. The bubble 
velocity in the latter time interval can be considered approximately constant. For calculating 
Re and De we have used the approximately constant value of  lib. 

In Fig. 10 the time evolution of the shape of a bubble rising in a Newtonian liquid is shown. 
The viscosity ratio is 1 and the density ratio is 5. The Reynolds number is 0.,1136 and Ca 
is 2.272. From Fig. 10 we note that at t = 0.25 the bubble trailing edge begins to move 
inward and the local center of  curvature moves to the outside of the bubble. At t = 0.45 the 
bubble deforms to an umbrella-like shape. The bubble shape remains symmetrical about the 
vertical, passing through the center for all times. We note that for the smaller values of  Ca, 
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FIG.  10. The shape of  a Newtonian bubble rising in a Newtonian fluid is shown at t = 0, 0.25 and 0.45. The 

t ime step is 0.0005. The density ratio is 5 and ~. is 1. The area-averaged velocity at t = 0.25 is 11.36. Based on 

this velocity Re = 0.1136 and Ca = 2.272. 
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FIG.  11. The vertical dimension of a Newtonian bubble rising in an Oldroyd-B fluid is shown as a function of 

time. The density ratio = 5, ~. = 1, Ca = 21.6, De = 1.62, and Re = 0.01. For varying resolution and time steps, 

the transient deformations are approximately the same. 
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FIG. 12. Isovalues of trA are shown for a buoyancy-driven Newtonian drop rising in the Oldroyd-B fluid for 
the density ratio of 5, ;~ = 1, and time step of 0.0001. (a) At t = 1.5 the area averaged velocity is 1.08, and based 
on this velocity, Re = 0.01, Ca = 21.6, and De = 1.62. (b) At t = 3.5, the area-averaged velocity is 0.84, and 
based on this velocity, Re = 0.0084, De = 1.261, and Ca = 16.81. Note that the viscoelastic stresses are relatively 
large near the interface and cause the formation of a characteristic cusp-like trailing edge. (c) Isovalues of trA 
are shown for a Newtonian drop rising in the Oldroyd-B fluid for a density ratio of 10, L = 10, and time step = 
0.0001. Notice that the relatively large values of viscoelastic stresses near the interface cause the formation of the 
characteristic cusp-like trailing edge. At t = 1.4, the area-averaged velocity is 2.15, and based on this velocity, 

Re = 0.0215, Ca = 4.3, and De = 3.225. 

the  b u b b l e  r i s ing  in a N e w t o n i a n  l iqu id  r e m a i n s  a p p r o x i m a t e l y  c i rcu lar  and  s y m m e t r i c a l  

a b o u t  the  ver t ica l .  

T h e  t i m e  e v o l u t i o n s  o f  the  s h a p e s  o f  r i s ing  b u b b l e s  in  the  O l d r o y d - B  l iqu id  are  s h o w n  in 

F i g .  11 for  t w o  d i f ferent  v a l u e s  o f  r e s o l u t i o n  and  t i m e  s tep .  For  this  b u b b l e ,  p = 1, d e n s i t y  

rat io  = 5 ,  OL = 2 0 0 ,  L = 1, R e  = 0 . 0 1 ,  D e  = 1 .62 ,  and  C a  = 2 1 . 6 .  F r o m  this  f igure  w e  n o t e  
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that the vertical length of  the bubble first decreases and then increases with time. From 

Fig. 11, we may conclude that the transient behavior remains approximately unchanged 

when the mesh resolutions and time steps are changed. 

For a bubble rising in an Oldroyd-B liquid, as expected, both velocity and the magnitude 

of  viscoelastic stresses increase with time. From Figs. 12a-12c we note that trA is relatively 

large near the interface and that the local maximums of  irA are near the top and bottom 

surfaces. Due to these viscoelastic stresses, the shape of a bubble rising in a viscoelastic 

liquid is quite different from that in a Newtonian liquid. Specifically, from Figs. 12a and 

12b, we note that the bubble trailing edge is pulled out, and the vertical bubble length 

increases with time. In a Ncwtonian liquid, on the other hand, as noted above, the vertical 

length decreases with time. At t = 3.5 the trailing edge takes a cusp-like shape, as shown 

in Fig. 12b. In our simulations the relatively small curvature at the trailing edge leads to the 

local breakup of  the bubble, and this results in a loss of  the fluid. The front of the bubble 

remains relatively round. Another interesting feature of deformation for the two viscoelastic 

cases is that for Ca =4 .3 .  the drop shape is prolate (see Fig. 12b), but for C a = 2 1 . 6  it is 

oblate (see Fig. 12c). 

4. CONCLUSION 

The level-set method developed in this paper can be used to efficiently compute the motion 

of  viscoelastic two-phase flows. The method is implemented using the Marchuk-Yanenko 

operator-splitting technique that allowed us to decouple the difficulties associated with 

the incompressibility constraint, the nonlinear convection and viscoelastic terms, and the 

interface problem. The linear systems for resulting subproblems are solved using schemes 

that do not require assembly of  the global matrix. The constitutive equation is solved using a 

scheme that uses a third-order upwind discretization for the advection term and guarantees 

the positive definiteness of  the configuration tensor. To validate our numerical method, we 

have studied the deformation of drops in simple shear flows, and the deformation and motion 

of rising bubbles, over a wide range of  dimensionless capillary and Deborah numbers. We 

have verified that the results are independent of  the mesh resolution as well as the size of 

the time step. 
Our simulations for ;'. = I show that when a Newtonian drop is subjected to a viscoelastic 

simple shear flow, there is a critical value of Ca above which there are no steady solutions. 

Similarly, for a viscoelastic drop subjected to a simple shear flow o f a  Newtonian liquid for 

a given De, there is a maximum value of Ca for which the drop attains a steady state shape. 

It is interesting to note that for the viscoelastic drop in a shear flow of  Newtonian fluid, when 

De < "~O(1) the drop deformation is smaller than that for a Newtonian drop at the same 

Ca value because the viscoelastic stresses inside the drop tend to reduce deformation. The 

opposite is true [br a Newtonian drop placed in a viscoelastic shear flow, as the viscoelastic 

stresses of the bulk fluid tend to increase drop deformation. In fact, in this case the radius 

of curvature near the tips is significantly smaller, which leads to tip streaming. A Newto- 

nian drop placed in a pressure-driven viscoelastic flow delbrms such that its front remains 

relatively round but the trailing edge assumes a cusp-like shape. 

Simulations show that a Newtonian bubble rising in a Newtonian liquid assumes 

an umbrella-like shape. A Newtonian bubble rising in a viscoelastic liquid, on the other 

hand, assumes an elongated shape and for some parameter values the trailing edge as- 

sumes a cusp-like shape. These results are in agreement with the experimental observations 
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r e p o r t e d  in [20], w h e r e  t he  a u t h o r s  o b s e r v e d  the  f o r m a t i o n  o f  a t w o - d i m e n s i o n a l  c u s p -  

l ike t r a i l ing  edge .  O u r  a n a l y s i s  s h o w s  that  v i s c o e l a s t i c  s t r e s s e s  nea r  the  t ra i l ing  e d g e  o f  

the  b u b b l e  are  re la t ive ly  large ,  a n d  w h e n  these  s t r e s s e s  a re  suf f ic ien t ly  la rge  to o v e r c o m e  

the  s u r f a c e - t e n s i o n  force ,  the  t ra i l ing  e d g e  is pu l l ed  out ,  w h i c h  l eads  to the  f o r m a t i o n  o f  a 

c u s p - s h a p e d  t ra i l ing  edge .  

ACKNOWLEDGMENTS 

This research was supported by National Science Foundation KD1 Grand Challenge Grant NSF/CTS-98-73236. 
The authors thank Professor R. Glowinski for his valuable suggestions. 

REFERENCES 

1. S. Osher and J. A. Sethian, Fronts propagating with curvaturc-dependent speed: Algorithms based on 1 tamilton- 
Jacobi formulations, J. Comput. Phys. 83, 12 t 1988). 

2. M. Sussman, E Smereka, and S. Osher, A level set approach for computing solutions to incompressible 
two-phase flow. J. Comput. Phys. 114, 146 (1994). 

3. M. Sussman and E Smereka, Axisymmetric free boundary problems, J. Fluid Mech. 341,269 (1997). 

4. M. Sussman, E. Fatemi, E Smereka, and S. Oshcr, An improved level set method for incompressible two-phase 
flows, Comput. Fluids 27,663 (1998). 

5. S. O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multifluid flows, 
J. Comput. Phys. 100, 25 (1992). 

6. E. Fatemi and E Odeh, Upwind finite difference solution of Boltzmann equation applied to electron transport 
in semiconductor devices, J. Comput. Phys. 108, 209 (1993). 

7. C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) methods tor the dynamics of tree boundaries, J. Comput. 
Phys. 39, 201 (1981). 

8. G. Ryskin and L. G. Leal, Numerical solution of Ii'ee-boundary problems in fluid mechanics. Part 1. The 
finite-difference technique, J. Fluid Mech. 148, 1 ( 19841. 

9. D.W. Bousfield, R. Keunings, and M. M Denn, Transient deformation of an inviscid inclusion in a viscoelastic 
extensional flow, J. Non-Newtonian Fluid Mech. 27, 205 (1988). 

10. D. S Noh, I. S. Kang, and L. G. Leal, Numerical solutions for the deformation of a bubble rising in a dilute 
polymeric fluids, Phys. Fluids 5(6), 1315 (1993). 

11. S. Ramaswamy and L. G. Leal. The deformation of a viscoelastic drop subjected to steady uniaxial extensional 
flow of a Newtonian fluid, J. Non-Newtonian Fhdd Mech. 85, 127 (1999). 

12. S. Ramaswamy and L. G. Leal. The deformation of a Newtonian drop in the uniaxial extensional flow of a 
viscoelastic liquid, J. Non-Newtonian Fluid Mech. 88, 149 (1999). 

13. G. I. Marchuk, Splitting and alternate direction methods, in Handhook of NumericalAnalysis, edited by E G. 
Ciarlet and J. L. Lions, North-Holland, (Amsterdam, 1990), Vol. 1, 197-462. 

14. R. Glowinski. T. W. Pan, T. I. Hesla. and D. D. Joseph, A distributed Lagrange multiplier/fictitious domain 
method for particulate flows, Int. J. Multiphase Flows 25(5), 755 (1999). 

15. E Singh, D. D. Joseph, T. 1. Hesla, R. Glowinski. and T. W. Pan, A distributed Lagrange multiplier/fictitious 
domain method for viscoelastic particulate flows, J. Non-Newtonian Fhdd Mech. 91. 165 t 2000 ). 

16. R. Glowinski, P. Tallec, M. Ravachol, and V. Tsikkinis, Chap. 7 in binite Elements in Fluids, edited by T. J. 
Chung (Hemisphere, Washington DC, 1992), Vol. 8. 

17. M. O. Bristeau, R. Glowinski, and J. Periaux, Numerical methods for Navier-Stokes equations. Application 
to the simulation of compressible and incompressible flows, Comput. Phys. Rep. 6, 73 (1987). 

18. P. Singh and L. G. Leal, Finite element simulation of the start-up problem for a viscoelastic fluid in an eccentric 
rotating cylinder geometry using a third-order accurate upwind scheme, Theor Comput. Fluid Mech. 5, 107 
(1993). 

19. R. Glowinski and O. Pironneau, Finite element methods for Navier-Stokes equation~, Antzu. Rev. Fluid Mech. 
24, 167 (1992). 



578 PILLAPAKKAM AND SINGH 

20. Y. J. Liu, T. Y. Liao, and D. D. Joseph, A two-dimensional cusp at the trailing edge of an air bubble rising in 
a viscoelastic liquid, J. FluM Mech. 304, 321 (1995). 

21. Y. C. Chang, T. Y. Hou, B. Merriman, and S. Osher, A level set formulation of Eulerian interface capturing 

methods for incompressible fluid flows, J. Comput. Phys. 124, 449 (1996). 

22. J. U. Brackbill, D. B. Kothe, and C. Zemach, A continuum method for modelling surface tension, J. Comput. 

Phys. 100, 335 (1992). 

23. M. Tabata and S. Fujima, An upwind finite element scheme for high Reynolds number flows. Int. J. Numer. 

Methods Fluids 14, 305 (1991). 

24. W. J. Milliken and L. G. Leal, Deformation and breakup of viscoelastic drops in planar extensional flows, 
J. Non-Newtonian Fluid Mech. 40, 355 (1991). 

25. S. K. Dey, C. Jacob, and M. Xanthos, Inert-gas extrusion of rigid PVC foam, Annu. Tech. Conf. ANTEC 

V3(3), 4138 (1995). 

26. S. B. Pillapakkam, E Singh, and L. G. Leal, Direct numerical simulations of deformation drops and bubbles 
in viscoelastic flows using the level-set method, manuscript in preparation. 


